Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1992 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Graphical Workstation Capability for Reliability Modeling
WU 505-66-21

6. AUTHOR(S)
Salvatore J. Bavuso, Sandra V. Koppen, and Pamela J. Haley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23665-5225 L-16887

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Aeronautics and Space Administration AGENCY REFORT NUMBER
Washington, DC 20546-0001 NASA TM-4317

11. SUPPLEMENTARY NOTES

Bavuso and Haley: Langley Research Center, Hampton, VA; Koppen: Lockheed Engineering & Sciences
Company, Hampton, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified—Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital
computer systems must also provide a means of interfacing with the user. This paper describes the new
graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that
implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user
with a graphical language for modeling system failure modes through the selection of various fault-tree gates,
including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree
becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP
converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can
then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun,
and a VAX workstation. The GO module is written in the C programming language and uses the graphical
kernel system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP
GO module are currently in beta-testing stages.

14. SUBJECT TERMS 15. NUMBER OF PAGES
HARP; Reliability; Graphics; Fault tree; PC; Markov; Workstation; Fault tolerance 11
16. PRICE CODE
A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION] 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. 739-18
298-102

NASA-Langley, 1992

Abstract

In addition to computational capabilities, soft-
ware tools for estimating the reliability of fault-
tolerant digital computer systems must also provide
a means of interfacing with the user. This paper
describes the new graphical interface capability of
the hybrid automated reliability predictor (HARP), a
software package that implements advanced reliabil-
ity modeling techniques. The graphics oriented (GO)
module provides the user with a graphical language
for modeling system failure modes through the selec-
tion of various fault-tree gates, including sequence-
dependency gates, or by a Markov chain. By using
this graphical input language, a fault tree becomes a
convenient notation for describing a system. In ac-
counting for any sequence dependencies, HARP con-
verts the fault-tree notation to a complex stochastic
process that is reduced to a Markov chain, which it
can then solve for system reliability. The graphics
capability is available for use on an IBM-compatible
PC, a Sun, and a VAX workstation. The GO mod-
ule is written in the C programming language and
uses the graphical kernel system (GKS) standard for
graphics implementation. The PC, VAX, and Sun
versions of the HARP GO module are currently in
beta-testing stages.

Introduction

The specification of a reliability model can take a
number of different forms. Some of the more popular
notations include: reliability block diagrams, fault
trees, Markov chains, and Petri nets. The popularity
of a particular form is often related to the application
and background of the modeler; however, models
resulting from each representation overlap to varying
degrees. Typically, a notation is chosen because of
the user’s familiarity with it. Modeling, the process
of abstracting reality, is an art, and the notation is
the confident expression of that reality.

Unfortunately, a particular notation is rarely ro-
bust enough to map into every reliability model of
interest. Tt is becoming increasingly necessary for
the reliability analyst to be fluent with more than
one notation. This requirement has come about be-
cause new system architectures that use embedded
computers are becoming increasingly more complex
to model in both size and dynamics. The modeling
problem is exacerbated by the necessity to arrive at a
numerical solution. A synergistic marriage of the two
capabilities is essential. There are many models for
which a practical numerical solution is unattainable.

For a large class of system designs, the combina-
tion of fault-tree or reliability block diagram models

and Monte Carlo simulation is feasible. For many
new system designs that include computers, partic-
ularly of the fault-tolerant variety, classical Monte
Carlo simulation becomes impractical because of the
amount of solution time required.

Attempts to bridge the gap between the desire
to include the dynamics of fault handling and the
desire to retain the familiar and popular fault-tree
notation have been moderately successful in recent
years by combining the succinct fault-tree notation
with the modeling dynamics of the Markov chain.
One successful attempt (ref. 1) was the hybrid au-
tomated reliability predictor (HARP), which allows
the user to describe the fault-occurrence model as
a dynamic fault tree by using a notation that in-
cludes sequence-dependency gates. What is unique
about HARP is that it converts the dynamic fault-
tree model notation into a Markov chain and solves
a Markov chain by using a standard, well-known,
numerical-integration algorithm. Until now, the only
possible, but impractical, method to arrive at a solu-
tion to such a dynamic fault-tree model was the so-
lution by Monte Carlo simulation. For many system
designs, even those that require huge Markov models,
HARP arrives at solutions that are affordable.

Another important aspect of a modeling notation
is its presentation. It is a common practice to make
a pictorial representation of a reliability model prior
to solution. The sketch and numerical data are
transcribed into a textual notation for input to a
computer program. For many practical applications,
this translation may be error prone.

With the advent of personal computers and com-
puter workstations, a graphical notational input is
becoming a practical necessity. Aside from the ne-
cessity for affordable graphical computational capa-
bility, the realization of such a graphical notational
input rests heavily on the presence of a standard
graphical language to insure widespread portabil-
ity. Although several graphical standards existed for
years, large support for any one standard was ab-
sent until IBM announced graphical kernel system
(GKS) support for their PC products (ref. 2). This
announcement prompted Langley Research Center
and the developers of HARP at Duke University to
embark on the development of a graphical input no-
tation for HARP.

Overview of HARP

HARP is a software tool for analytically predict-
ing the reliability of fault-tolerant digital computer
systems; it is also applicable to a very large class
of systems in general. In addition to reliability, it

1

/ Fault)

Markov
model

e

(Petri ‘

net

FEHM T
o
- J

FORM

Reliability

-i f%%r% @5—\5/-] * Availability
“%ﬂm | M@%@ Sensitivity

Failure causes

Figure 1. FORM and FEHM submodels.

can be used to analyze system availability, sensitiv-
ity, and failure causes. Its notable features include
very large system modeling, dynamic fault modeling,
automatic conversion of fault-tree input to a Markov
chain or manual Markov chain input, automatic in-
sertion of fault-handling models into Markov chains,
automatic parametric analysis, and portability of the
code. HARP utilizes a method called behavioral de-
composition to solve for the reliability of a system
when fault/error handling is modeled. A discussion
on this subject follows; however, the reader should
see references 1 and 3 for more details.

When fault/error handling is considered, depen-
dencies exist between stochastic events that make it
necessary and practical to use a Markovian repre-
sentation of the reliability model. A Markov pro-
cess contains information about a system’s fault
processes, component depletion, and recovery pro-
cedures. Graphically, a Markov model consists of
states and transitions. The states contain informa-
tion about the number of operational components,
and the transitions are rates at which specific com-
ponents fail, which causes a change in the state of
the system. Computations are done to determine
the probability of being in a state based on time.
The reliability of the system can then be determined
by adding the probabilities of the operational states
(ref. 1). However, in systems designed with fault
tolerance, a very large model state space, which in-
troduces computational problems, can result. These
problems can be solved by utilizing the methods of
decomposition and aggregation, that is, dividing the
system into smaller subsystems based on component
types, solving these subsystems separately, and then
combining the results of the subsystems to produce

2

the solution of the larger system. However, this
method requires that the behaviors of the subsystems
be independent. In many fault-tolerant systems, this
is a false assumption, because these systems may in-
clude dependencies.

HARP offers an alternative approach called be-
havioral decomposition (ref. 4). Using this method,
HARP allows a user to segregate a reliability model
into two submodels, a fault-occurrence/repair model
(FORM) and fault/error-handling model (FEHM).
The FORM describes a system as a fault tree or a
Markov chain and relates information about hard-
ware redundancy and fault processes. Using the
FEHM to describe specific recovery procedures, a
user can include details about permanent, tran-
sient, and intermittent faults in a reliability model.
Figure 1 illustrates the behavioral decomposition
method with FORM and FEHM submodels. HARP
provides a user with seven FEHM’s, which range
from simple (probabilities and moments) to very
complex (an extended stochastic Petri net). The
model can be input into HARP by using an inter-
active textually oriented interface or a graphically
oriented interface. If the FORM is a fault tree, it is
first converted to a complex stochastic process that is
reduced to a Markov chain. The FEHM’s are solved
separately from the FORM to determine the exit
probabilities and holding times for transient restora-
tion (R), permanent coverage (C), near-coincident
fault failures (N), and single-point failures (S).

Figure 2 demonstrates the basic concept of how
HARP inserts FEHM’s into a Markov chain. Cir-
cles represent operational states of the system,
and octagons represent system failure states. The
“32” in the upper left circle indicates that this

&| FEHM |=>

f

FEHM

I !

d

— FEHM

] l S
oo &

Figure 2. Representation of combined FORM/FEHM model Markov chain.

state represents the system condition in which three
processor subsystems and two bus subsystems are op-
erational. The Markov process enters the failure pro-
cessor (FP) failure state when all system processors
have failed and enters the failure bus (FB) failure
state when all bus subsystems have failed. System
failure near-coincident failure (FNCF) and failure
single-point failure (FSPF) failures states are entered
when a near-coincident or single-point system failure
occurs. The sum of the probabilities of entering the
octagon states is the system failure probability, the
metric of most interest to reliability engineers. The
FEHM’s are shown as rectangles and are automati-
cally inserted between operational states by HARP.
The Markov process moves from left to right when
processor failures occur and from top to bottom for
bus failures; therefore, FEHM’s for processors are in-
serted left to right and bus FEHM’s are inserted top
to bottom. The FEHM exit probabilities are used
to alter the transition rates between the states in the
Markov chain FORM, which is not depicted here. No
matter how complex the FEHM models may be, and
no matter how many FEHM’s are specified, this pro-
cess produces at most two additional system failure
states in the chain, which represent near-coincident
fault failures and single-point failures. (The reduc-
tion of an enormous number of Markov states for
most practical systems is the forte of behavioral de-
composition.) The model is then given to a common
ordinary differential-equation solver to compute the
results.

HARP is composed of three modules that are
written in the Fortran programming language. The

first module, TDRIVE, executes a textual user inter-
face and converts a fault tree to a Markov chain. The
second HARP module, FIFACE, builds the symbolic
transition rate matrix, and the third HARP module,
HARPENG, performs the computation.

HARP applications include aircraft life-critical
systems, civilian-aircraft electronics, military avion-
ics, space systems, and nuclear power control sys-
tems. References 3 and 5 contain more details on
specific systems and architectures for which HARP
has been applied.

HARP was developed on a Sun 3 computing plat-
form running under Berkeley Unix 4.3. The source
code was written in ANSI standard Fortran 77.
HARP has been ported to a large host of com-
puting platforms; the major operating systems are
DEC VMS and Ultrix, Berkeley Unix 4.3, AT&T
Unix 5.2, and MS-DOS. PC-HARP running under
MS-DOS is a scaled-down version of HARP that
executes on IBM-compatible 286/386/486 machines.
Certain limitations are placed on PC-HARP’s ca-
pabilities because of the 640-K memory restriction
imposed by MS-DOS. A Markov chain is restricted
to 500 or fewer states (without truncation). The
500-state maximum limit is configured for a 512-K
memory complement, which was the memory size of
the PC AT that was used during PC-HARP devel-
opment. A 640-K complement will allow a larger
model, but the user must adjust various array sizes
in the source code and recompile as specified in the
HARP user’s guide (ref. 6). FEHM’s are allowed and
single-point failure probabilities are computed, but
no near-coincident fault-failure probabilities can be

3

§| — Scrolling boxes

[]

|§|DRAW || DEL || GRID |

| QUIT || HELP || SCALE|

|LABEL || SAVE || LOAD |

| DICT || COPY || VIEW |

|ERASE ||REDRW|| MOVE |

(Primitive menus)

Figure 3. Screen layout.

obtained. Also, PC-HARP does not produce bounds
or allow Weibull failure distributions.

Description of Graphics Input Capability

Graphics have been incorporated into the graph-
ics oriented (GO) module of HARP; these graphics
offer the user the option of graphical input (ref. 6).
The GO module offers a means of inputting a relia-
bility model as a fault tree or Markov chain by using
a graphical input language. The GO module con-
verts the user graphical input into files that are read
by the next HARP module, TDRIVE for fault trees,
FIFACE for a Markov chain. The graphical files are
portable, so that files created on a PC can be used
with the VAX/VMS version or the Sun/Unix version
of HARP. A user can thus create a model with the
GO module and solve it on a PC or, if it is too large,
transfer the files to a VAX or Sun and execute the
VAX or Sun unscaled HARP with these files. The
GO program was developed on an IBM PC AT com-
puting platform running under MS-DOS. The source
code is written in ANSI standard C. The initial de-
sign and implementation of the GO program was
done at Duke University. Final design and imple-
mentation was completed at Langley Research Cen-
ter in collaboration with Duke. The GO module is
available for use on Sun and VAX workstations and
for PC 286/386/486 compatible machines.

The GO module provides static icon menus, a
drawing area, and a message area on the screen
(fig. 3). The menus are located on the right side
of the screen, the drawing area is the large square
on the left of the screen, and the message area is

4

the small rectangle below the drawing area. The
function menu appears at the upper right of the
screen as illustrated in figure 3. For details, see
the graphics user guide (ref. 7). Using a mouse,
the user makes selections from the function menu
or one of the primitive menus. For instance, if a
user desires to draw a fault-tree basic event, the
user first selects the DRAW icon from the function
menu. If the desired icon to be drawn is a circle,
the user selects the circle icon from the primitive
menu shown in figure 4, and then uses the mouse to
position the circle. The message area displays error
messages and instructions and provides prompts to
the user for which a response from the keyboard may
be indicated.

By selecting the appropriate functions, a user
can interactively manipulate a fault tree or Markov
chain model, exercise file handling, or receive on-line
help. Fault trees and Markov chains are constructed
by drawing and combining primitives properly. The
delete function DEL is used to erase individual prim-
itives. Other functions that allow a user to change a
model on the screen are COPY, MOVE, ERASE, and
REDRW. The function icons VIEW, SCALE, and
HELP facilitate the modeling procedure. File han-
dling is accomplished by the icons LOAD and SAVE.

The dictionary DICT icon enables the creation of
a dictionary file, which is required for other HARP
modules. During this phase, an interactive inter-
face generates prompts for component names, failure
rates, and component FEHM’s. If the user chooses
to describe an FEHM, the GO program automati-
cally draws certain fault/error-handling models on

O

FDEP

MIN

O VR
Counterclockwise
Clockwise

SEQ

o |||

FBOX

O e[| |D

Fault-tree menus

Markov chain menu

Figure 4. Primitive menus.

the screen as a prompt and continues the interactive
interface for an FEHM description. The LABEL icon
provides a means of relating the dictionary compo-
nent types with the model drawn on the screen. Dur-
ing labeling, the GO program leads the user through
all the basic events or states by marking each event
or state sequentially with a red X. With the aid of the
keyboard, the user enters the appropriate component
type number as defined in the dictionary. The result
of this process is that all fault-tree basic events and
any appropriate gates are labeled, or, if the FORM
is a Markov chain, all states and transition arcs are
labeled.

To further aid the user, there is on-line context-
sensitive help available by selection of the HELP
function, which provides a brief description of each
of the functions in the function menu. There is
also a SCALE function that allows the scaling factor
of a model to be manipulated. On the sides, top,
and bottom of the drawing area are scrolling boxes
(fig. 3) with arrows that allow the user to scroll
the drawing-area window in four different directions.
This feature permits models to be larger than one
drawing area. The functionality of the VIEW icon is
to display other portions of a model that are not in
the immediate drawing-area window. This function
causes a small red box to appear in the lower right
corner of the drawing area. The box contains a
scaled-down representation of the model.

The SAVE and LOAD functions are used to save
a model to a file and to retrieve it later for modifi-
cations. This feature gives the user the capability of
reviewing and editing files at any time during a ses-
sion or ending a session at any time by simply saving
a drawing and quitting.

There are three available primitive menus that are
selectable by the user. Figure 4 depicts the choices
that appear one at a time on the lower right of the

screen. The GO program is executed by using the
command “go {7 or “go m.” By typing “go {,” the
fault-tree option is selected and the leftmost fault-
tree menu in figure 4 becomes visible. The adjacent
fault-tree menu is selected by using the right mouse
button to toggle between the two fault-tree menus.
The command “go m” invokes the Markov chain
menu, which will not alternate with the others with
the mouse button.

The fault-tree symbols constitute a dynamic
fault-tree notation that allows models to be more
general than typical combinatorial models. The stan-
dard logical AND and OR gates are represented
(fig. 4), and there is a circle to symbolize basic
events. Also included are an M/N gate, a dou-
ble circle to represent shared basic events, and an
FBOX symbol to mark the top of a fault tree and
represent system failure. Four of the symbols rep-
resent nonstandard gates that allow sequence and
functional dependencies. These symbols include the
functional-dependency gate, “FDEP”; the cold-spare
gate, “CSP”; the sequence-enforcing gate, “SEQ”;
and the priority AND gate, which appears just above
the “CSP” gate in figure 4. With these symbols, a
user can model dynamic characteristics of a system
that could not otherwise be modeled with a combi-
natorial fault tree (ref. 5).

The order of the input events to the sequence
gates is very important. The converter from the
fault tree to a Markov chain in the TDRIVE module
expects this order to represent the sequence that
the reliability modeler intended for the utilization
of components. Likewise, the GO module expects
the user to draw these inputs in a sequential order
from left to right. During the drawing phase, many
changes can occur that result in the repositioning
of events. The user should be cognizant of the
fact that the incoming basic events (circles) to the

5

sequence gates, particularly the cold-spare gate and
the sequence-enforcing gate, are ordered according
to their left-to-right position on the screen and not
according to the position of the incoming arcs that
connect the basic events to the gate.

The double-circle icon in the fault-tree primitive
menu is a special symbol that can be used to sim-
plify fault-tree construction. It represents shared (re-
peated) basic events; that is, the events are not dis-
tinct. Normally, this type of basic event has more
than one outgoing arc. For the purposes of simpli-
fication and readability, GO employs a double circle
to represent the sharing of a basic event. If using
this symbol in conjunction with the cold-spare gate
and the sequence-enforcing gate, the user must re-
alize that the order of the incoming events is recon-
ciled according to the position of the double circle on
the screen, and not the position of the event that is
shared.

A user completes construction of a fault-tree
model when the model (FORM) has been drawn on
the screen and saved to a file, the dictionary with
any necessary FEHM’s is created, and the model is
labeled and again saved. The GO program creates
files with the appropriate extensions and copies the
information from memory to the file in the current
directory on a disk. These files include the dictio-
nary file with a “.dic” extension and two fault-tree
files with a “.tre” and an “.ftr” extension. If the user
specified any FEHM’s during the dictionary phase,
these files also exist. Upon completion of modeling
a Markov chain, a file with an “.mkv” extension is
created. For a Markov chain, the user need not ex-
plicitly define a dictionary unless coverage is included
in the model (ref. 6).

Functionality of Dependency Gates

The last refinements to the GO module include
four special fault-tree gates that allow sequence and
functional dependencies. These powerful extensions
to the GO module and the HARP program were
developed jointly by the HARP team members at
Duke University and Langley Research Center.

The first new gate, the functional-dependency
gate (fig. 5), appeared in HARP version 5 and was
developed and used at Duke to describe the inte-
grated airframe propulsion system (IAPSA) reliabil-
ity model (ref. 8). This gate is the logical equivalent
of a combinatorial fault tree composed of AND and
OR gates when no fault handling is specified. The
action of the functional-dependency gate at first ap-
pears strange, since, in most of its applications, it
appears to be disconnected from the fault tree. Con-
ceptually, though, its functionality is straightforward

6

Nondependent output

. Functional-
Trigger —=| dependency
gate

bl

Dependent basic events

Figure 5. Functional-dependency gate.

and very useful. The input, labeled trigger, can be
the output from any gate, whereas the outputs take
two forms. The nondependent output simply mim-
ics the trigger input and may or may not be con-
nected to the input of any gate; that is, it can dan-
gle if desired. The typical use of this gate involves
the other outputs. The outputs labeled “dependent
basic events” must be basic events. Although they
are labeled dependent basic events, the basic events
themselves are independent. The dependency is re-
lated to the trigger event. A typical use of this
gate is to account for the functional loss of devices
because some other device failed and was therefore
unable to provide signal or power input to the down-
stream operational devices. The notational simplic-
ity of the functional-dependency gate can be better
appreciated by viewing the TAPSA fault-tree model
discussed in reference 9 or the fault-tolerant paral-
lel processor (FTPP) fault-tree model discussed in
reference 5. Although the functionality of this gate
has been recognized and reported in the literature
(ref. 10), a single gate implementing the functional-
ity has not, to the knowledge of the authors, been
reported.

The next gate that was added is a noncombina-
torial gate that implements a cold-spare model. This
sequence-dependency gate (fig. 6) is naturally called
the cold-spare (CSP) gate. In figure 6, the gate out-
put fires (produces an output) when and only when
the primary event occurs first, followed by events 1st,
2nd, ...nth. Events 1st, 2nd, ...nth cannot occur first.
The primary event can thus represent an active unit,
and event 1st is the cold spare that exhibits a zero
failure rate until the active unit fails. At that in-
stant, the cold spare is powered up and immediately
exhibits a failure rate greater than zero. If additional
cold-spare units are added, they are powered up from
left to right, and all inputs are independent (possibly

Cold-spare gate

e

Primary 1st 2nd nth

Figure 6. Cold-spare gate.

replicated) basic events. A gate with similar func-
tionality has been reported in the literature (ref. 11)
as an inhibit gate. A useful variation of the CSP
gate is called the sequence-enforcing gate. This gate
is functionally equivalent to the CSP gate, with the
exception of how it treats shared events. The inputs
of the dependency gate can be (possibly replicated)
basic events or the output of some other gate for the
primary input only. As with the CSP gate, the se-
quencing of events is left to right. One important ap-
plication for this gate is to enable the user to specify

a particular fault/error-handling model (FEHM) for
a particular state transition entirely as a fault-tree
entry. Without this gate, the user is required to ini-
tially ignore the placement of the FEHM in the fault
tree until its equivalent Markov chain is generated,
at which time the notation is inserted into the chain
description by using a text editor. This latter scheme
was used to model the advanced reconfigurable com-
puter system (ARCS) reported in reference 12. Fig-
ures 7 and 8 show the ARCS fault trees without and
with the sequence-enforcing gate.

Figure 7 depicts the hydraulics stage as “REP 3 of
(h),” which means the hydraulics stage includes three
devices with identical failure rates. This HARP no-
tation signals the conversion routine from fault tree
to Markov chain to aggregate Markovian states; the
model state size is thus reduced. With this notation,
HARP assigns the same FEHM to all three devices,
and this FEHM is placed between all Markovian tran-
sitions except the one prior to system failure. In the
ARCS model, fault handling is assumed to be per-
fect when only one fault occurs in one of three vot-
ing devices; therefore, it is undesirable to have the
same FEHM assigned to all state transitions. The
sequence-enforcing gate offers a solution that can be
applied at the fault-tree level.

T

A
N O

A ®

@)

@Cléﬁ

:

Figure 7. Fault-tree representation of ARCS.

;
o

SEQ

O

C1

i

2

o211

\
©

Figure 8. State-dependent FEHM for hydraulics.

CPU1 Channel 1

CPU2 Channel 2

Sensor Al \
DIU

Sensor AL =

Sensor A2 \
DIU

/

Sensor A2

Figure 9. Two-channel system.

Figure 8 shows the sequence-enforcing gate with
inputs “H1” and “REP 2 of (H2).” By splitting up
the replication of three hydraulics to one nonrepli-
cated “H1” device and two replicated “H2” devices,
no FEHM can be assigned to “H1” as desired (i.e.,
assigns perfect fault handling), but any single FEHM
can be assigned to the other two devices, “H2.” All
three devices could still have the same failure rate,
of course. A complete application of the sequence-
enforcing gate for ARCS for all devices, and not just
the hydraulics as illustrated above, is necessary to
accurately replicate the results of reference 3. The
cold-spare gate and the sequence-enforcing gate differ
primarily in the way they treat shared events (ref. 6).

The last new addition of sequence-dependency
gates is called the priority AND (P-AND) gate. The
P-AND gate differs from a combinatorial AND gate
in only one respect—in HARP only two inputs for
the P-AND are allowed, and the gate produces an
output only if the leftmost event occurs first and
is followed by the rightmost event. Contrary to

8

the CSP gate, the rightmost event in a P-AND can
occur first, but no output results. The functionality,
the name of the gate, and the gate symbol were
directly obtained from reference 13. The HARP team
members recognized the need for this functionality
for application to fault-tolerant systems before the
priority AND gate was recognized in the literature by
the team. The particular system that prompted our
interest is shown in figures 9 and 10—a two-channel
system (ref. 6).

Our experience with the use of these new gate ad-
ditions to HARP has been somewhat extensive. We
have applied them to some very complicated fault-
tolerant network systems (ref. 5). Although there
is no warm-spare gate, that model has been func-
tionally emulated with the existing gates (ref. 14).
Pooled spares models have also been emulated
(ref. 15). With the HARP Markov chain trunca-
tion technique that bounds the truncation error, ex-
tremely large Markov chains have been modeled and
solved that have simple fault-tree diagrams. These

FBOX

D=-

-o—

NN
Do

Cw [N | (ow

2xAl 2+A2

Figure 10. Fault-tree model of two-channel system.

models have demonstrated the succinct yet power-
ful notational value of the HARP extended fault-tree
capability.

Experiences and Results

The GO module was originally designed to oper-
ate on an IBM PC AT with a color monitor using
MS-DOS, but has since been modified to execute in
both Sun and VAX/VMS workstation environments.
The designers of GO selected the C programming
language paired with the graphical kernel system
(GKS) graphics standard for program development.
Language C was chosen because of its flexibility and
robustness, and GKS was selected based on its rep-
utation as a device-independent graphics standard
(ref. 2); thus, there are ideally portable graphics ap-
plications between the systems. The software and re-
sources needed to execute the GO module of HARP
vary depending on the workstation. All versions of
the executable code require a minimum of 300 K
bytes of memory, GKS device drivers, header files,
and several static FEHM files. In addition, the PC
requires a minimum of 512 K bytes of memory, an
EGA/VGA graphics display board, a math copro-
cessor, and a mouse. The program relies on the
graphic software system (GSS) GKS for the PC,
SunGKS for the Sun, and VAX GKS for the VAX.
Each vendor provides a C language binding. The
purpose of the binding is to standardize the GKS
function names and the number and order of function

parameters, which permits programs written with a
specific language binding to be used with any GKS
implementation.

In converting the GO module from GSS*GKS to
SunGKS, many dissimilarities were found between
the two implementations of GKS. Most of the GSS
function calls had to be reconstructed because of dif-
ferences found in function-naming conventions, in-
consistent parameter passing, and deviating defini-
tions for GKS types. The differences were mainly
attributed to the GSS decision to implement the
C language binding to resemble a Fortran binding.
Although both SunGKS and VAX GKS adhere to
the proposed ANSI C language binding standard,
three salient differences exist between them. The
major distinction between the two implementations
relates to the amount of initialization each function
needs before calling. For example, when calling a
SunGKS function, the programmer only needs to de-
clare the function or parameter as a specific GKS
C type definition, and all memory needed to per-
form the function is allocated. To accomplish the
same objective using the VAX GKS C binding, the
programmer is responsible for designating all mem-
ory necessary for that function. Another area of
deviation concerns workstation specifics. For ex-
ample, when using SunGKS, certain features, such
as changing the default size of a GKS window, are
tied to utilities written for Suntools, a windowing
environment for the Sun. Since these utilities are
specifically written to work only in the Suntools en-
vironment, the application is not portable to other
systems. Other variations concern differing syntax
for enumerated and GKS type definitions and dif-
ferences between workstation attributes, such as in-
dexing colors, markers, prompts, and echo types.
Because of the lack of standardization of the C lan-
guage binding and because each vendor incorporates
machine dependencies into their implementation, de-
veloping portable applications is very difficult.

Concluding Remarks

The result of this effort is an engineering work-
station environment that is attainable on several
different platforms and offers a high-level graphical
input capability for reliability and availability mod-
eling. The fault-tree notation is an important and
powerful modeling feature that simplifies model in-
put. The dynamic sequence-dependency gates bring
the flexibility and modeling power of Markov chains
to fault-tree users without the accompanying, and
often confusing, modeling detail typical of Markov
chains.

Because the graphics oriented (GO) module sup-
plements the other hybrid automated reliability pre-
dictor (HARP) modules, the user has the option
of choosing to input information either textually or
graphically without being concerned about file for-
mats or portability. The GO module offers the user
the advantage of a familiar notation expressed as a
visual image on a computer screen or a printable im-
age on a plotter by using the appropriate graphical
kernel system (GKS) device drivers.

Acknowledgments

Original design and code implementation of the
GO module was done by Elizabeth Rothmann.
The original design of HARP was done by Kishor
S. Trivedi, Joanne Bechta Dugan, Robert M. Geist,
and Mark K. Smotherman. The original HARP im-
plementors are Elizabeth Rothmann, Joanne Bechta
Dugan, Mark Boyd, Mark K. Smotherman, and Nitin
Mittal.

NASA Langley Research Center
Hampton, VA 23665-5225
October 31, 1991

References

1. Dugan, Joanne Bechta; Trivedi, Kishor S.; Smotherman,
Mark K.; and Geist, Robert M.: The Hybrid Automated
Reliability Predictor. ATAA J. Guid., Control & Dyn.,
vol. 9, no. 3, May—June 1986, pp. 319-331.

2. McKay, Lucia: GKS Primer.
tional Corp., 1984.

Nova Graphics Interna-

3. Bavuso, Salvatore J.; Dugan, Joanne Bechta; Trivedi,
Kishor; Rothmann, Beth; and Boyd, Mark: Applications
of the Hybrid Automated Reliability Predictor— Revised
Fdition. NASA TP-2760, 1988.

4. Geist, Robert; Smotherman, Mark; Trivedi, Kishor;
and Dugan, Joanne Bechta: The Reliability of Life-
Critical Computer Systems. Acta Inform., vol. 23, 1986,
pp. 621-642.

5. Dugan, Joanne Bechta; Bavuso, Salvatore J.; and Boyd,
Mark A.: Fault Trees and Sequence Dependencies. An-
nual Reliability and Maintainability Symposium—1990
Proceedings, IEEE Catalog No. 90CH2804-3, Inst. of Elec-
trical and Electronics Engineers, Inc., 1990, pp. 286-293.

10

10.

11.

12.

13.

14.

15.

. Veeraraghavan, Malathi:

. Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi,

Kishor S.; Boyd, Mark; Mittal, Nitin; and Bavuso,
Salvatore J.: HARP: The Hybrid Automated Reliability
Predictor—Introduction and Guide for Users, HARP Ver-
sion 6.1. Dep. of Computer Science, Duke Univ., May
1990.

. Rothmann, Elizabeth; Mittal, Nitin; Howell, Sandra; and

Bavuso, Salvatore J.: HARP: The Hybrid Automated
Reliability Predictor— Guide for Graphics Users, HARP
Version 6.1. Dep. of Computer Science, Duke Univ.,
Oct. 1990.

. Cohen, G. C.; Lee, C. W.; Brock, L. D.; and Allen, J. G.:

Design Validation Concept for an Integrated Airframe
Propulsion Control System Architecture (IAPSA II).
NASA CR-178084, 1986.

Modeling and Evaluation of
Fault-Tolerant Multiple Processor Systems. Ph.D. Thesis,
Duke Univ., 1988.

Martensen, Anna L.; and Bavuso, Salvatore J.: Tutorial
and Hands-On Demonstration of a Fluent Interpreter for

CARE III. NASA TM-4011, 1987.

Chatterjee, Purnendu: Fault Tree Analysis: Reliability
Theory and Systems Safety Analysis. ORC 74-34 (Con-
tracts N00014-69-A-0200-1036 and F33615-73-C-4078),
Univ. of California, Nov. 1974. (Available from DTIC
as AD A004 209.)

Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J;
McClellan, K. L.; and Templeman, J. E.: Airborne Ad-
vanced Reconfigurable Computer System (ARCS). NASA
CR-145024, 1976.

Fussell, J. B.; Aber, E. F.; and Rahl, R. G.: On the Quan-
titative Analysis of Priority-AND Failure Logic. IFEE
Trans. Reliab., vol. R-25, no. 5, Dec. 1976, pp. 324-326.

Boyd, Mark; and Tuazon, Jesus O.: Fault Tree Models for
Fault Tolerant Hypercube Multiprocessors. Annual Relia-
bility and Maintainability Symposium—1991 Proceedings,
IEEE Catalog No. 91CH2966-0, Inst. of Electrical and
Electronics Engineers, Inc., 1991, pp. 610-614.

Dugan, Joanne Bechta; Bavuso, S. J.; and Boyd, M. A.:
Modeling Advanced Fault-Tolerant Systems With HARP.
Topics in Reliability € Maintainability € Statistics, Con-
solidated Lecture Notes—1991 “Tutorial Notes,” An-
nual Reliability and Maintainability Symposium, 1991,
pp. FTS-i-FTS-25.

